Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### 5,10,10,15,20,20-Hexamethylcalix[4]pyrrole 5,15-diethyl diester

#### Abdullah Aydogan and Ahmet Akar\*

Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul, Turkey Correspondence e-mail: akara@itu.edu.tr

Received 9 October 2009; accepted 13 November 2009

Key indicators: single-crystal X-ray study; T = 153 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.057; wR factor = 0.135; data-to-parameter ratio = 17.0.

In the title compound,  $C_{32}H_{40}N_4O_4$ , the pyrrole rings and ester groups adopt a 1,3-alternate conformation in which the alternating pyrrole and ester units are in opposite directions. The structure displays N-H···O hydrogen bonding and exhibits disorder [site occupancies of 0.81(2) and 0.71(2)] in the peripheral ethyl groups.

#### **Related literature**

For related calix[4]pyrrole structures see: Gale et al. (1998, 2001). For the synthesis of mono- and di-ester functionalized calix[4]pyrrole structures, see: Akar & Aydogan (2005). For applications of calix[4]pyrroles, see: Varo et al. (1996); Beer & Gale (2001); Nishiyabu & Pavel Anzenbacher (2005); Miyaji et al. (1999); Nielsen et al. (2004); Sessler et al. (1998).



#### **Experimental**

Crystal data

 $C_{32}H_{40}N_4O_4$  $M_r = 544.68$ Monoclinic,  $P2_1/n$ a = 10.4392 (3) Å b = 11.6453 (3) Å c = 24.0488 (7) Å  $\beta = 95.380 \ (2)^{\circ}$ 

| $V = 2910.68 (14) \text{ Å}^3$    |
|-----------------------------------|
| Z = 4                             |
| Mo $K\alpha$ radiation            |
| $\mu = 0.08 \text{ mm}^{-1}$      |
| T = 153  K                        |
| $0.30 \times 0.30 \times 0.23$ mm |
|                                   |

#### Data collection

| Nonius KappaCCD diffractometer<br>Absorption correction: none<br>11684 measured reflections | 6619 independent reflections<br>2971 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.064$ |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Refinement                                                                                  |                                                                                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.057$<br>wR(F <sup>2</sup> ) = 0.135                              | H atoms treated by a mixture of independent and constrained                                        |

| wK(F) = 0.135    | independent and constrained                                |
|------------------|------------------------------------------------------------|
| S = 1.09         | refinement                                                 |
| 6619 reflections | $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 390 parameters   | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ |
| 12 restraints    |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H                                        | $H \cdots A$     | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|--------------------------------------------|------------------|--------------|--------------------------------------|
| $N2-H2N\cdots O25^{i}$      | 0.86 (2)                                   | 2.37 (2)         | 3.211 (3)    | 167 (2)                              |
| Symmetry code: (i) -        | $x + \frac{3}{2}, y + \frac{1}{2}, -z - z$ | $+\frac{1}{2}$ . |              |                                      |

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997): program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: SHELXTL/ PC; software used to prepare material for publication: SHELXTL/ PC.

We would like to express our special thanks to Jonathan L. Sessler and Vincent M. Lynch, the University of Texas at Austin, USA, for their valuable instrumental support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2288).

#### References

Akar, A. & Aydogan, A. (2005). J. Heterocycl. Chem. 42, 931-934.

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Beer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486-516.
- Gale, P. A., Anzenbacher, P. & Sessler, J. L. (2001). Coord. Chem. Rev. 222, 57-102
- Gale, P. A., Sessler, J. L. & Kràl, V. (1998). Chem. Commun. 24, 1-8.
- Miyaji, H., Pavel Anzenbacher, J., Sessler, J. L., Bleasdaleb, E. R. & Gale, P. A. (1999). Chem. Commun. 17, 1723-1724.
- Nielsen, K. A., Cho, W.-S., Jeppesen, J. O., Lynch, V. M., Becher, J. & Sessler, J. L. (2004). J. Am. Chem. Soc. 126, 16296-16297.
- Nishiyabu, R. & Pavel Anzenbacher, J. (2005). J. Am. Chem. Soc. 127, 8270-8271.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sessler, J. L., Anzenbacher, P., Jursikova, K., Miyaji, H., Gengezz, J. W., Tvermoes, N. A., Allen, W. E., Shriver, J. A., Gale, P. A. & Kral, V. (1998). Pure Appl. Chem. 70, 2401-2408.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Varo, G., Brown, L. S., Needleman, R. & Lanyi, J. K. (1996). Biochemistry, 35, 6604-6611.

Acta Cryst. (2009). E65, o3157 [doi:10.1107/S1600536809048260]

### 5,10,10,15,20,20-Hexamethylcalix[4]pyrrole 5,15-diethyl diester

### A. Aydogan and A. Akar

#### Comment

Anion receptors have become a focus of the research field of supramolecular chemistry because of the important roles of anions in biomedicine (Varo *et al.*, 1996) and environmental processes (Beer & Gale, 2001). In addition anion receptors can be used as ion-selective receptors (Nishiyabu & Pavel Anzenbacher, 2005), phase-transfer catalysts (Miyaji *et al.*, 1999), ion-selective optical sensors (Nielsen *et al.*, 2004) and chromatographic separation systems (Sessler *et al.*, 1998).

In this context, calix[4]pyrroles have emerged as molecules of particular interest because of their simple preparations in one-step and easy modification of their core structures.

The title compound is shown in Fig. 1. It exhibits a strong intermolecular H-bonding interaction as depicted in Fig. 2.

As it can be seen in Fig. 3, pyrrole units of title compound adopt 1,3-alternate conformation which is the nitrogen atoms of neighboring pyrroles oriented in opposite directions. It is also observed that the ester groups are in opposite directions according to calixpyrrole plane and *meso*-carbon atoms containing ester groups are connected to different pyrrole rings.

#### Experimental

Synthesis of the title compound was carried out according to a previously reported procedure (Akar & Aydogan, 2005).

The sample grew as very large, yellow prisms by slow evaporation from methylene chloride/diethylether. The data crystal was cut from a large specimen.

#### Refinement

The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2 x Ueq of the attached atom (1.5 x Ueq for methyl hydrogen atoms). The hydrogen atoms on the pyrrole nitrogen atoms were observed in a difference Fourier map and refined with isotropic displacement parameters. Both methyl groups on the ester moieties were disordered about two orientations. The disorder was modeled in the same way for both groups. The site occupancy for one carbon atom orientation was assigned a variable x. The site occupancy factor for the other conformer was assigned the variable (1 - x). The variable x was refined while refining the two atoms with a single isotropic displacement parameter. At the same time, the geometry of the methyl carbon atoms were restrained to be equivalent. In this way, the site occupancy factor for C36 refined to 81 (2)% and that for C28 refined to 77 (2)%. The lower occupancy carbon atoms, C28A and C36A, were refined isotropically.

**Figures** 



Fig. 1. View of the title compound showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Most hydrogen atoms have been removed for clarity. The methyl groups on both esters were disordered about two positions as shown. The minor occupancy groups have labels appended by A.



Fig. 2. View illustrating a portion of the H-bonding interactions between molecules along the twofold screw axis. Displacement ellipsoids are scaled to the 30% probability level. Most hydrogen atoms have been removed for clarity.



Fig. 3. View of the 1,3-alternate conformation of the title compound. Neighboring pyrrole rings and ester groups are oriented in opposite directions. Hydrogen atoms have been removed for clarity.

### 5,10,10,15,20,20-hexamethyl-5,10,15,20,22,24-hexahydroporphyrin 5,15-diethyl diester

| Crystal data                             |                                                       |
|------------------------------------------|-------------------------------------------------------|
| $C_{32}H_{40}N_4O_4$                     | $F_{000} = 1168$                                      |
| $M_r = 544.68$                           | $D_{\rm x} = 1.243 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/n$                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 10.4392 (3) Å                        | Cell parameters from 5852 reflections                 |
| <i>b</i> = 11.6453 (3) Å                 | $\theta = 2.9 - 27.5^{\circ}$                         |
| c = 24.0488 (7) Å                        | $\mu = 0.08 \text{ mm}^{-1}$                          |
| $\beta = 95.380 \ (2)^{\circ}$           | T = 153  K                                            |
| $V = 2910.68 (14) \text{ Å}^3$           | Prisms, yellow                                        |
| Z = 4                                    | $0.30\times0.30\times0.23~mm$                         |
|                                          |                                                       |
| Data collection                          |                                                       |
| Nonius KappaCCD<br>diffractometer        | 2971 reflections with $I > 2\sigma(I)$                |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.064$                                 |

| Monochromator: graphite      | $\theta_{\rm max} = 27.5^{\circ}$ |
|------------------------------|-----------------------------------|
| <i>T</i> = 153 K             | $\theta_{\min} = 3.0^{\circ}$     |
| ω scans                      | $h = -13 \rightarrow 13$          |
| Absorption correction: none  | $k = -15 \rightarrow 15$          |
| 11684 measured reflections   | $l = -31 \rightarrow 31$          |
| 6619 independent reflections |                                   |

#### Refinement

| Refinement on $F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Secondary atom site location: difference Fourier map                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hydrogen site location: inferred from neighbouring sites                                                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.057$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H atoms treated by a mixture of independent and constrained refinement                                                                           |
| $wR(F^2) = 0.135$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $w = 1/[\sigma^2(F_o^2) + (0.044P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                         |
| <i>S</i> = 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\Delta/\sigma)_{\rm max} = 0.035$                                                                                                              |
| 6619 reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$                                                                                            |
| 390 parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$                                                                                           |
| 12 restraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extinction correction: SHELXTL/PC (Sheldrick, 1998), Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| mente de la companya de la comp |                                                                                                                                                  |

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0023 (5)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Both methyl groups on the ester moieties were disordered about two orientations. The disorder was modeled in the same way for both groups. The site occupancy for one carbon atom orientation was assigned a variable x. The site occupancy factor for the other conformer was assigned the variable (1 - x). The variable x was refined while refining the two atoms with a single isotropic displacement parameter. At the same time, the geometry of the methyl carbon atoms were restrained to be equivalent. In this way, the site occupancy factor for C36 refined to 81 (2)% and that for C28 refined to 77 (2)%. The lower occupancy carbon atoms, C28A and C36A, were refined isotropically.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(A^2)$ 

|    | x            | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|----|--------------|--------------|-------------|---------------------------|-----------|
| N1 | 0.41232 (19) | 0.58854 (17) | 0.12330 (8) | 0.0335 (5)                |           |
| N2 | 0.57872 (18) | 0.40469 (18) | 0.21083 (8) | 0.0320 (5)                |           |

| N3   | 0.86084 (19) | 0.48641 (18) | 0.15438 (9)  | 0.0364 (5)  |
|------|--------------|--------------|--------------|-------------|
| N4   | 0.69557 (17) | 0.70790 (17) | 0.08407 (9)  | 0.0332 (5)  |
| C1   | 0.41029 (19) | 0.70290 (18) | 0.10945 (9)  | 0.0294 (6)  |
| C2   | 0.3522 (2)   | 0.7587 (2)   | 0.14962 (9)  | 0.0353 (6)  |
| H2   | 0.3358       | 0.8397       | 0.1507       | 0.042*      |
| C3   | 0.3188 (2)   | 0.6765 (2)   | 0.18906 (10) | 0.0351 (6)  |
| Н3   | 0.2777       | 0.6920       | 0.2224       | 0.042*      |
| C4   | 0.35692 (19) | 0.57116 (19) | 0.17249 (9)  | 0.0289 (6)  |
| C5   | 0.3415 (2)   | 0.45208 (18) | 0.19602 (9)  | 0.0296 (6)  |
| C6   | 0.4570 (2)   | 0.38006 (19) | 0.18602 (9)  | 0.0302 (6)  |
| C7   | 0.4680 (2)   | 0.2850 (2)   | 0.15386 (10) | 0.0373 (6)  |
| H7   | 0.3987       | 0.2475       | 0.1319       | 0.045*      |
| C8   | 0.5988 (2)   | 0.2511 (2)   | 0.15865 (10) | 0.0394 (6)  |
| H8   | 0.6346       | 0.1872       | 0.1401       | 0.047*      |
| C9   | 0.6660 (2)   | 0.32472 (19) | 0.19419 (9)  | 0.0312 (6)  |
| C10  | 0.8051 (2)   | 0.3271 (2)   | 0.21892 (10) | 0.0372 (6)  |
| C11  | 0.8675 (2)   | 0.4401 (2)   | 0.20719 (10) | 0.0343 (6)  |
| C12  | 0.9319 (2)   | 0.5184 (2)   | 0.24153 (10) | 0.0398 (6)  |
| H12  | 0.9505       | 0.5087       | 0.2811       | 0.048*      |
| C13  | 0.9654 (2)   | 0.6129 (2)   | 0.20934 (10) | 0.0395 (6)  |
| H13  | 1.0120       | 0.6799       | 0.2229       | 0.047*      |
| C14  | 0.9206 (2)   | 0.5919 (2)   | 0.15496 (10) | 0.0324 (6)  |
| C15  | 0.9303 (2)   | 0.65566 (19) | 0.10072 (10) | 0.0357 (6)  |
| C16  | 0.8010 (2)   | 0.65376 (19) | 0.06609 (10) | 0.0314 (6)  |
| C17  | 0.7601 (2)   | 0.6029 (2)   | 0.01682 (10) | 0.0412 (7)  |
| H17  | 0.8129       | 0.5597       | -0.0062      | 0.049*      |
| C18  | 0.6277 (2)   | 0.6277 (2)   | 0.00454 (10) | 0.0412 (6)  |
| H18  | 0.5728       | 0.6012       | -0.0272      | 0.049*      |
| C19  | 0.5895 (2)   | 0.69349 (18) | 0.04663 (9)  | 0.0282 (5)  |
| C20  | 0.4601 (2)   | 0.74499 (18) | 0.05557 (9)  | 0.0290 (6)  |
| C21  | 0.2204 (2)   | 0.39553 (19) | 0.16701 (10) | 0.0388 (6)  |
| H21A | 0.2292       | 0.3889       | 0.1278       | 0.058*      |
| H21B | 0.2085       | 0.3206       | 0.1824       | 0.058*      |
| H21C | 0.1472       | 0.4427       | 0.1725       | 0.058*      |
| C22  | 0.3263 (2)   | 0.46188 (19) | 0.25879 (9)  | 0.0380 (6)  |
| H22A | 0.4022       | 0.4963       | 0.2774       | 0.057*      |
| H22B | 0.2529       | 0.5089       | 0.2642       | 0.057*      |
| H22C | 0.3143       | 0.3869       | 0.2740       | 0.057*      |
| C23  | 0.8124 (2)   | 0.3064 (2)   | 0.28177 (10) | 0.0464 (7)  |
| H23A | 0.7728       | 0.3686       | 0.3000       | 0.070*      |
| H23B | 0.7676       | 0.2362       | 0.2881       | 0.070*      |
| H23C | 0.9006       | 0.2994       | 0.2967       | 0.070*      |
| C24  | 0.8709 (2)   | 0.2257 (2)   | 0.19279 (11) | 0.0450 (7)  |
| O25  | 0.89367 (17) | 0.13441 (17) | 0.21515 (8)  | 0.0633 (6)  |
| O26  | 0.89694 (16) | 0.24818 (15) | 0.14039 (7)  | 0.0576 (5)  |
| C27  | 0.9610 (3)   | 0.1595 (3)   | 0.11130 (14) | 0.0835 (11) |
| H27C | 1.0493       | 0.1554       | 0.1263       | 0.100*      |
| H27D | 0.9216       | 0.0867       | 0.1176       | 0.100*      |
| H27A | 1.0173       | 0.1177       | 0.1379       | 0.100*      |
|      |              |              |              |             |

0.23 0.23 0.77

| H27B         | 1.0123             | 0.1939             | 0.084       | 7 0.1        | 00*         | 0.77         |
|--------------|--------------------|--------------------|-------------|--------------|-------------|--------------|
| C28          | 0.8770 (4)         | 0.0833 (3)         | 0.083       | 51 (19) 0.0  | 866 (14)    | 0.77         |
| H28A         | 0.9235             | 0.0259             | 0.065       | 0 0.1        | 30*         | 0.77         |
| H28B         | 0.8272             | 0.0472             | 0.110       | 2 0.1        | 30*         | 0.77         |
| H28C         | 0.8206             | 0.1239             | 0.056       | 4 0.1        | 30*         | 0.77         |
| C28A         | 0.9568 (12)        | 0.1779 (10         | 0) 0.054    | 2 (3) 0.0    | 65 (4)*     | 0.23         |
| H28D         | 1.0006             | 0.1173             | 0.036       | 6 0.0        | 98*         | 0.23         |
| H28E         | 0.8686             | 0.1806             | 0.038       | 8 0.0        | 98*         | 0.23         |
| H28F         | 0.9976             | 0.2499             | 0.047       | 6 0.0        | 98*         | 0.23         |
| C29          | 1.0315 (2)         | 0.5981 (2)         | 0.067       | 54 (10) 0.0  | 445 (7)     |              |
| H29A         | 1.0052             | 0.5207             | 0.058       | 8 0.0        | 67*         |              |
| H29B         | 1.0404             | 0.6396             | 0.033       | 6 0.0        | 67*         |              |
| H29C         | 1.1126             | 0.5973             | 0.090       | 0.0          | 67*         |              |
| C30          | 0.9734 (2)         | 0.7806 (2)         | 0.113       | 52 (11) 0.0  | 475 (7)     |              |
| H30A         | 0.9107             | 0.8184             | 0.133       | 8 0.0        | 71*         |              |
| H30B         | 1.0547             | 0.7791             | 0.135       | 8 0.0        | 71*         |              |
| H30C         | 0.9825             | 0.8214             | 0.079       | 4 0.0        | 71*         |              |
| C31          | 0.3626 (2)         | 0.7138 (2)         | 0.006       | 25 (9) 0.0   | 401 (6)     |              |
| H31A         | 0.3936             | 0.7393             | -0.02       | 80 0.0       | 60*         |              |
| H31B         | 0.3514             | 0.6320             | 0.005       | 1 0.0        | 60*         |              |
| H31C         | 0.2817             | 0.7500             | 0.010       | 8 0.0        | 60*         |              |
| C32          | 0.4738 (2)         | 0.8754 (2)         | 0.063       | 79 (10) 0.0  | 350 (6)     |              |
| O33          | 0.56342 (17)       | 0.92236 (          | 0.088       | 80 (7) 0.0   | 483 (5)     |              |
| O34          | 0.36920 (15)       | 0.93043 (1         | 0.042       | 03 (7) 0.0   | 469 (5)     |              |
| C35          | 0.3633 (3)         | 1.0521 (2)         | 0.054       | 80 (13) 0.0  | 615 (9)     |              |
| H35C         | 0.4456             | 1.0784             | 0.071       | 0.0          | 74*         | 0.19         |
| H35D         | 0.3400             | 1.0956             | 0.021       | 4 0.0        | 74*         | 0.19         |
| H35A         | 0.4335             | 1.0915             | 0.040       | 1 0.0        | 74*         | 0.81         |
| H35B         | 0.3700             | 1.0626             | 0.094       | 6 0.0        | 74*         | 0.81         |
| C36          | 0.2440 (3)         | 1.0986 (3)         | 0.031       | 41 (18) 0.0  | 751 (13)    | 0.81         |
| H36A         | 0.2399             | 1.1790             | 0.039       | 9 0.1        | 13*         | 0.81         |
| H36B         | 0.2374             | 1.0882             | -0.00       | 84 0.1       | 13*         | 0.81         |
| H36C         | 0.1744             | 1.0593             | 0.046       | 6 0.1        | 13*         | 0.81         |
| C36A         | 0.2700 (13)        | 1.0685 (10         | 0.093       | 1 (6) 0.0    | 72 (5)*     | 0.19         |
| H36D         | 0.2637             | 1.1482             | 0.102       | 6 0.1        | 09*         | 0.19         |
| H36E         | 0.1882             | 1.0420             | 0.076       | 4 0.1        | 09*         | 0.19         |
| H36F         | 0.2944             | 1.0247             | 0.126       | 2 0.1        | 09*         | 0.19         |
| H1N          | 0.453 (2)          | 0.5350 (18         | 3) 0.109    | 3 (9) 0.0    | 31 (7)*     |              |
| H2N          | 0.600 (2)          | 0.4638 (19         | 0.231       | 2 (9) 0.0    | 40 (8)*     |              |
| H3N          | 0.819 (2)          | 0.4537 (18         | 3) 0.126    | 7 (9) 0.0    | 29 (7)*     |              |
| H4N          | 0.698 (2)          | 0.752 (2)          | 0.113       | 5 (10) 0.0   | 53 (8)*     |              |
| Atomic displ | acement parameters | $(\mathring{A}^2)$ |             |              |             |              |
| 1            | $U^{11}$           | $U^{22}$           | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
| N1           | 0.0380 (12)        | 0.0285 (13)        | 0.0356 (13) | 0.0067 (10)  | 0.0116 (10) | -0.0012 (10) |
| N2           | 0.0303 (12)        | 0.0319 (13)        | 0.0334 (12) | -0.0028(10)  | 0.0021 (10) | -0.0029(10)  |
| N3           | 0.0301 (12)        | 0.0465 (14)        | 0.0320 (14) | -0.0011 (11) | -0.0003(10) | 0.0010 (12)  |
|              | · /                | × /                | × /         |              |             |              |

| N4  | 0.0322 (13) | 0.0405 (13) | 0.0268 (12) | 0.0038 (10)  | 0.0030 (10)  | -0.0034 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0247 (12) | 0.0273 (14) | 0.0361 (15) | 0.0016 (10)  | 0.0027 (11)  | 0.0029 (12)  |
| C2  | 0.0340 (14) | 0.0289 (13) | 0.0448 (16) | 0.0060 (11)  | 0.0126 (12)  | 0.0005 (13)  |
| C3  | 0.0334 (14) | 0.0359 (15) | 0.0383 (15) | 0.0029 (12)  | 0.0144 (12)  | 0.0002 (12)  |
| C4  | 0.0222 (12) | 0.0340 (14) | 0.0310 (14) | 0.0021 (11)  | 0.0047 (11)  | 0.0008 (12)  |
| C5  | 0.0262 (13) | 0.0306 (14) | 0.0322 (14) | -0.0004 (11) | 0.0046 (11)  | 0.0013 (11)  |
| C6  | 0.0269 (14) | 0.0312 (14) | 0.0319 (14) | -0.0026 (11) | -0.0001 (11) | 0.0037 (12)  |
| C7  | 0.0354 (15) | 0.0376 (15) | 0.0374 (15) | 0.0017 (12)  | -0.0038 (12) | -0.0049 (13) |
| C8  | 0.0394 (15) | 0.0387 (15) | 0.0398 (16) | 0.0105 (13)  | 0.0030 (12)  | -0.0015 (13) |
| C9  | 0.0293 (14) | 0.0355 (14) | 0.0294 (14) | 0.0053 (12)  | 0.0058 (11)  | 0.0063 (12)  |
| C10 | 0.0292 (14) | 0.0507 (16) | 0.0324 (15) | 0.0067 (12)  | 0.0064 (11)  | 0.0080 (13)  |
| C11 | 0.0253 (13) | 0.0509 (16) | 0.0270 (15) | 0.0044 (12)  | 0.0046 (11)  | 0.0087 (13)  |
| C12 | 0.0339 (15) | 0.0558 (17) | 0.0296 (15) | 0.0063 (13)  | 0.0021 (12)  | 0.0009 (14)  |
| C13 | 0.0327 (14) | 0.0479 (17) | 0.0379 (16) | -0.0016 (12) | 0.0030 (12)  | -0.0064 (14) |
| C14 | 0.0219 (13) | 0.0361 (15) | 0.0396 (16) | 0.0045 (11)  | 0.0045 (11)  | 0.0032 (12)  |
| C15 | 0.0295 (14) | 0.0411 (15) | 0.0375 (15) | 0.0029 (11)  | 0.0093 (12)  | 0.0058 (13)  |
| C16 | 0.0275 (13) | 0.0365 (14) | 0.0314 (15) | 0.0033 (11)  | 0.0097 (12)  | 0.0049 (12)  |
| C17 | 0.0393 (16) | 0.0466 (16) | 0.0389 (16) | 0.0074 (13)  | 0.0094 (13)  | -0.0089 (13) |
| C18 | 0.0388 (16) | 0.0494 (16) | 0.0345 (15) | 0.0012 (13)  | -0.0014 (12) | -0.0119 (13) |
| C19 | 0.0305 (13) | 0.0290 (13) | 0.0254 (13) | 0.0001 (11)  | 0.0037 (11)  | 0.0025 (11)  |
| C20 | 0.0301 (13) | 0.0274 (13) | 0.0298 (14) | 0.0013 (11)  | 0.0034 (11)  | 0.0005 (11)  |
| C21 | 0.0287 (14) | 0.0377 (15) | 0.0497 (16) | -0.0001 (11) | 0.0014 (12)  | 0.0029 (12)  |
| C22 | 0.0345 (14) | 0.0382 (15) | 0.0425 (16) | -0.0006 (12) | 0.0100 (12)  | 0.0067 (12)  |
| C23 | 0.0375 (15) | 0.0659 (18) | 0.0349 (15) | -0.0033 (13) | -0.0011 (12) | 0.0147 (14)  |
| C24 | 0.0305 (15) | 0.0565 (19) | 0.0478 (18) | 0.0063 (13)  | 0.0030 (13)  | 0.0123 (16)  |
| O25 | 0.0570 (13) | 0.0590 (13) | 0.0736 (15) | 0.0257 (10)  | 0.0044 (10)  | 0.0218 (11)  |
| O26 | 0.0627 (12) | 0.0598 (12) | 0.0536 (13) | 0.0199 (10)  | 0.0230 (10)  | 0.0037 (10)  |
| C27 | 0.089 (3)   | 0.082 (3)   | 0.082 (3)   | 0.036 (2)    | 0.026 (2)    | -0.015 (2)   |
| C28 | 0.087 (3)   | 0.070 (3)   | 0.098 (4)   | 0.034 (3)    | -0.015 (3)   | -0.025 (3)   |
| C29 | 0.0347 (15) | 0.0597 (18) | 0.0408 (16) | 0.0062 (13)  | 0.0123 (12)  | 0.0075 (14)  |
| C30 | 0.0375 (15) | 0.0481 (17) | 0.0568 (18) | -0.0038 (13) | 0.0043 (13)  | 0.0081 (14)  |
| C31 | 0.0380 (15) | 0.0440 (15) | 0.0379 (16) | 0.0027 (12)  | 0.0005 (12)  | 0.0045 (13)  |
| C32 | 0.0332 (15) | 0.0375 (15) | 0.0352 (15) | 0.0027 (13)  | 0.0084 (12)  | 0.0042 (13)  |
| O33 | 0.0475 (11) | 0.0368 (10) | 0.0592 (13) | -0.0056 (9)  | -0.0024 (9)  | -0.0044 (9)  |
| O34 | 0.0428 (11) | 0.0307 (10) | 0.0671 (13) | 0.0075 (8)   | 0.0047 (9)   | 0.0049 (9)   |
| C35 | 0.069 (2)   | 0.0301 (16) | 0.088 (2)   | 0.0102 (14)  | 0.0207 (18)  | 0.0045 (15)  |
| C36 | 0.051 (2)   | 0.045 (2)   | 0.129 (4)   | 0.0151 (19)  | 0.010 (2)    | 0.008 (2)    |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| N1—C1  | 1.372 (3) | C21—H21A | 0.9601 |
|--------|-----------|----------|--------|
| N1—C4  | 1.379 (3) | C21—H21B | 0.9600 |
| N1—H1N | 0.84 (2)  | C21—H21C | 0.9600 |
| N2—C6  | 1.382 (3) | C22—H22A | 0.9600 |
| N2—C9  | 1.387 (3) | С22—Н22В | 0.9600 |
| N2—H2N | 0.86 (2)  | C22—H22C | 0.9600 |
| N3—C11 | 1.376 (3) | C23—H23A | 0.9600 |
| N3—C14 | 1.377 (3) | С23—Н23В | 0.9600 |
| N3—H3N | 0.85 (2)  | С23—Н23С | 0.9600 |

| 214 010           | 1 2 5 2 (2) | 604 005       | 1 0 0 5 (0) |
|-------------------|-------------|---------------|-------------|
| N4—C19            | 1.370 (3)   | C24—O25       | 1.205 (3)   |
| N4—C16            | 1.373 (3)   | C24—O26       | 1.340 (3)   |
| N4—H4N            | 0.87 (2)    | O26—C27       | 1.446 (3)   |
| C1—C2             | 1.354 (3)   | C27—C28       | 1.375 (4)   |
| C1—C20            | 1.522 (3)   | C27—C28A      | 1.387 (7)   |
| C2—C3             | 1.414 (3)   | С27—Н27С      | 0.9599      |
| С2—Н2             | 0.9601      | С27—Н27D      | 0.9600      |
| C3—C4             | 1.360 (3)   | С27—Н27А      | 0.9600      |
| С3—Н3             | 0.9602      | С27—Н27В      | 0.9601      |
| C4—C5             | 1.512 (3)   | C28—H28A      | 0.9600      |
| C5—C6             | 1.507 (3)   | C28—H28B      | 0.9601      |
| C5—C21            | 1.534 (3)   | C28—H28C      | 0.9600      |
| C5—C22            | 1.537 (3)   | C28A—H28D     | 0.9601      |
| C6—C7             | 1.361 (3)   | C28A—H28E     | 0.9600      |
| С7—С8             | 1.417 (3)   | C28A—H28F     | 0.9600      |
| С7—Н7             | 0.9600      | С29—Н29А      | 0.9600      |
| C8—C9             | 1.358 (3)   | С29—Н29В      | 0.9597      |
| С8—Н8             | 0.9600      | С29—Н29С      | 0.9602      |
| C9—C10            | 1.518 (3)   | С30—Н30А      | 0.9600      |
| C10—C11           | 1.506 (3)   | С30—Н30В      | 0.9600      |
| C10—C23           | 1.526 (3)   | С30—Н30С      | 0.9600      |
| C10—C24           | 1.531 (3)   | С31—Н31А      | 0.9603      |
| C11—C12           | 1.364 (3)   | C31—H31B      | 0.9600      |
| C12—C13           | 1.409 (3)   | C31—H31C      | 0.9599      |
| C12—H12           | 0.9601      | C32—O33       | 1.196 (3)   |
| C13—C14           | 1.369 (3)   | C32—O34       | 1.330 (3)   |
| С13—Н13           | 0.9600      | 034-035       | 1 453 (3)   |
| C14—C15           | 1 513 (3)   | C35—C36A      | 1 414 (7)   |
| C15-C16           | 1 518 (3)   | C35 - C36     | 1 424 (4)   |
| C15-C29           | 1 537 (3)   | C35—H35C      | 0.9600      |
| $C_{15} = C_{20}$ | 1.545 (3)   | C35_H35D      | 0.9599      |
| C16-C17           | 1 358 (3)   | C35—H35A      | 0.9599      |
| C17-C18           | 1.556 (5)   | C35_H35R      | 0.9599      |
| C17C18            | 0.0508      | C36 H36A      | 0.9004      |
| $C_{1}^{1}$       | 1 350 (3)   | C36 H36R      | 0.9001      |
| C18 H18           | 0.0500      | C36 H36C      | 0.9000      |
| C18—R18           | 0.9399      |               | 0.9000      |
| C19 - C20         | 1.512 (3)   | C30A—H30D     | 0.9600      |
| C20—C31           | 1.532 (3)   | C30A—H30E     | 0.9601      |
| C20—C32           | 1.550 (5)   | С30А—Н30Г     | 0.9601      |
| C1—N1—C4          | 110.63 (19) | C5—C22—H22A   | 109.3       |
| C1—N1—H1N         | 128.3 (14)  | C5—C22—H22B   | 109.4       |
| C4—N1—H1N         | 120.1 (15)  | H22A—C22—H22B | 109.5       |
| C6—N2—C9          | 109.7 (2)   | C5—C22—H22C   | 109.7       |
| C6—N2—H2N         | 125.8 (15)  | H22A—C22—H22C | 109.5       |
| C9—N2—H2N         | 124.2 (15)  | H22B—C22—H22C | 109.5       |
| C11—N3—C14        | 110.9 (2)   | C10—C23—H23A  | 110.4       |
| C11—N3—H3N        | 121.6 (15)  | С10—С23—Н23В  | 108.2       |
| C14—N3—H3N        | 127.3 (15)  | H23A—C23—H23B | 109.5       |
| C19—N4—C16        | 111.1 (2)   | С10—С23—Н23С  | 109.8       |

| C19—N4—H4N  | 124.6 (16)  | H23A—C23—H23C  | 109.5     |
|-------------|-------------|----------------|-----------|
| C16—N4—H4N  | 123.9 (16)  | H23B—C23—H23C  | 109.5     |
| C2—C1—N1    | 106.9 (2)   | O25—C24—O26    | 122.9 (2) |
| C2—C1—C20   | 131.7 (2)   | O25—C24—C10    | 125.1 (2) |
| N1-C1-C20   | 121.36 (19) | O26—C24—C10    | 112.0 (2) |
| C1—C2—C3    | 108.0 (2)   | C24—O26—C27    | 117.3 (2) |
| C1—C2—H2    | 125.7       | C28—C27—O26    | 113.2 (3) |
| С3—С2—Н2    | 126.3       | C28A—C27—O26   | 113.3 (5) |
| C4—C3—C2    | 108.44 (19) | C28A—C27—H27C  | 108.7     |
| С4—С3—Н3    | 125.5       | O26—C27—H27C   | 108.9     |
| С2—С3—Н3    | 126.1       | C28A—C27—H27D  | 108.6     |
| C3—C4—N1    | 106.06 (19) | O26—C27—H27D   | 109.3     |
| C3—C4—C5    | 132.3 (2)   | H27C—C27—H27D  | 107.9     |
| N1—C4—C5    | 121.57 (19) | С28—С27—Н27А   | 108.7     |
| C6—C5—C4    | 109.62 (17) | O26—C27—H27A   | 108.7     |
| C6—C5—C21   | 109.06 (18) | С28—С27—Н27В   | 108.4     |
| C4—C5—C21   | 109.60 (18) | O26—C27—H27B   | 109.6     |
| C6—C5—C22   | 110.87 (18) | H27A—C27—H27B  | 108.1     |
| C4—C5—C22   | 108.90 (18) | C27—C28—H28A   | 110.4     |
| C21—C5—C22  | 108.77 (17) | C27—C28—H28B   | 108.5     |
| C7—C6—N2    | 106.9 (2)   | H28A—C28—H28B  | 109.5     |
| C7—C6—C5    | 130.9 (2)   | C27—C28—H28C   | 109.5     |
| N2—C6—C5    | 122.2 (2)   | H28A—C28—H28C  | 109.5     |
| C6—C7—C8    | 108.2 (2)   | H28B-C28-H28C  | 109.5     |
| С6—С7—Н7    | 125.7       | H28A—C28—H28E  | 100.7     |
| С8—С7—Н7    | 126.1       | C27—C28A—H28D  | 110.5     |
| C9—C8—C7    | 108.2 (2)   | H28C-C28A-H28D | 101.1     |
| С9—С8—Н8    | 125.5       | C27—C28A—H28E  | 109.0     |
| С7—С8—Н8    | 126.3       | H28D—C28A—H28E | 109.5     |
| C8—C9—N2    | 106.9 (2)   | C27—C28A—H28F  | 108.9     |
| C8—C9—C10   | 132.6 (2)   | H28D—C28A—H28F | 109.5     |
| N2—C9—C10   | 120.3 (2)   | H28E—C28A—H28F | 109.5     |
| C11—C10—C9  | 110.98 (19) | С15—С29—Н29А   | 109.1     |
| C11—C10—C23 | 110.0 (2)   | С15—С29—Н29В   | 110.3     |
| C9—C10—C23  | 110.00 (18) | H29A—C29—H29B  | 109.5     |
| C11—C10—C24 | 112.22 (18) | С15—С29—Н29С   | 109.0     |
| C9—C10—C24  | 105.9 (2)   | H29A—C29—H29C  | 109.5     |
| C23—C10—C24 | 107.6 (2)   | H29B—C29—H29C  | 109.5     |
| C12—C11—N3  | 106.0 (2)   | C15—C30—H30A   | 109.5     |
| C12-C11-C10 | 131.9 (2)   | C15—C30—H30B   | 108.7     |
| N3—C11—C10  | 122.0 (2)   | H30A-C30-H30B  | 109.5     |
| C11—C12—C13 | 108.9 (2)   | C15—C30—H30C   | 110.3     |
| C11—C12—H12 | 124.3       | H30A-C30-H30C  | 109.5     |
| C13—C12—H12 | 126.8       | H30B—C30—H30C  | 109.5     |
| C14—C13—C12 | 107.7 (2)   | С20—С31—Н31А   | 109.8     |
| C14—C13—H13 | 125.9       | C20—C31—H31B   | 109.2     |
| C12—C13—H13 | 126.4       | H31A—C31—H31B  | 109.4     |
| C13—C14—N3  | 106.5 (2)   | С20—С31—Н31С   | 109.5     |
| C13—C14—C15 | 133.7 (2)   | H31A—C31—H31C  | 109.5     |

| N3-C14-C15    | 119.8 (2)    | H31B—C31—H31C   | 109.5        |
|---------------|--------------|-----------------|--------------|
| C14—C15—C16   | 109.75 (17)  | O33—C32—O34     | 123.5 (2)    |
| C14—C15—C29   | 109.79 (19)  | O33—C32—C20     | 125.1 (2)    |
| C16-C15-C29   | 109.15 (19)  | O34—C32—C20     | 111.3 (2)    |
| C14—C15—C30   | 109.4 (2)    | C32—O34—C35     | 115.9 (2)    |
| C16—C15—C30   | 110.53 (19)  | C36A—C35—O34    | 108.3 (5)    |
| C29—C15—C30   | 108.18 (18)  | C36—C35—O34     | 109.9 (2)    |
| C17—C16—N4    | 106.2 (2)    | С36А—С35—Н35С   | 109.8        |
| C17—C16—C15   | 132.6 (2)    | O34—C35—H35C    | 110.0        |
| N4-C16-C15    | 121.2 (2)    | C36A—C35—H35D   | 109.7        |
| C16-C17-C18   | 108.3 (2)    | O34—C35—H35D    | 110.5        |
| C16-C17-H17   | 125.6        | H35C—C35—H35D   | 108.6        |
| C18—C17—H17   | 126.1        | C36—C35—H35A    | 110.0        |
| C19—C18—C17   | 108.0 (2)    | O34—C35—H35A    | 109.8        |
| C19-C18-H18   | 125.3        | C36—C35—H35B    | 109.0        |
| C17-C18-H18   | 126.7        | O34—C35—H35B    | 109.5        |
| C18—C19—N4    | 106.4 (2)    | H35A—C35—H35B   | 108.6        |
| C18—C19—C20   | 131.2 (2)    | С35—С36—Н36А    | 110.0        |
| N4-C19-C20    | 122.40 (19)  | С35—С36—Н36В    | 108.9        |
| C19—C20—C1    | 111.99 (17)  | H36A—C36—H36B   | 109.5        |
| C19—C20—C31   | 109.46 (18)  | С35—С36—Н36С    | 109.5        |
| C1—C20—C31    | 109.13 (17)  | H36A—C36—H36C   | 109.5        |
| C19—C20—C32   | 109.68 (18)  | H36B—C36—H36C   | 109.5        |
| C1—C20—C32    | 104.12 (17)  | C35—C36A—H36D   | 110.6        |
| C31—C20—C32   | 112.4 (2)    | H36C—C36A—H36D  | 101.6        |
| C5-C21-H21A   | 109.3        | С35—С36А—Н36Е   | 108.9        |
| С5—С21—Н21В   | 110.2        | H36D—C36A—H36E  | 109.5        |
| H21A—C21—H21B | 109.5        | C35—C36A—H36F   | 108.8        |
| С5—С21—Н21С   | 108.9        | H36D—C36A—H36F  | 109.5        |
| H21A—C21—H21C | 109.5        | H36E—C36A—H36F  | 109.5        |
| H21B-C21-H21C | 109.5        |                 |              |
| C4—N1—C1—C2   | -0.6 (3)     | N3-C14-C15-C16  | 46.3 (3)     |
| C4—N1—C1—C20  | -177.20 (18) | C13—C14—C15—C29 | 102.7 (3)    |
| N1—C1—C2—C3   | 0.4 (3)      | N3—C14—C15—C29  | -73.7 (3)    |
| C20—C1—C2—C3  | 176.5 (2)    | C13—C14—C15—C30 | -15.9 (3)    |
| C1—C2—C3—C4   | 0.0 (3)      | N3-C14-C15-C30  | 167.72 (19)  |
| C2-C3-C4-N1   | -0.4 (2)     | C19—N4—C16—C17  | -0.9 (3)     |
| C2—C3—C4—C5   | -176.6 (2)   | C19—N4—C16—C15  | -179.13 (19) |
| C1—N1—C4—C3   | 0.6 (3)      | C14—C15—C16—C17 | -112.8 (3)   |
| C1—N1—C4—C5   | 177.35 (19)  | C29—C15—C16—C17 | 7.6 (3)      |
| C3—C4—C5—C6   | -146.8 (2)   | C30-C15-C16-C17 | 126.4 (3)    |
| N1-C4-C5-C6   | 37.4 (3)     | C14—C15—C16—N4  | 64.9 (3)     |
| C3—C4—C5—C21  | 93.5 (3)     | C29—C15—C16—N4  | -174.8 (2)   |
| N1-C4-C5-C21  | -82.2 (2)    | C30-C15-C16-N4  | -55.9 (3)    |
| C3—C4—C5—C22  | -25.3 (3)    | N4-C16-C17-C18  | 0.5 (3)      |
| N1-C4-C5-C22  | 158.90 (19)  | C15—C16—C17—C18 | 178.5 (2)    |
| C9—N2—C6—C7   | -0.1 (2)     | C16—C17—C18—C19 | 0.0 (3)      |
| C9—N2—C6—C5   | -179.93 (19) | C17—C18—C19—N4  | -0.5 (3)     |
| C4—C5—C6—C7   | -114.5 (3)   | C17—C18—C19—C20 | 179.8 (2)    |
|               |              |                 |              |

| C21—C5—C6—C7                  | 5.5 (3)      | C16—N4—C19—C18   | 0.9 (3)      |
|-------------------------------|--------------|------------------|--------------|
| C22—C5—C6—C7                  | 125.2 (3)    | C16—N4—C19—C20   | -179.41 (19) |
| C4—C5—C6—N2                   | 65.3 (3)     | C18—C19—C20—C1   | 120.4 (3)    |
| C21—C5—C6—N2                  | -174.73 (19) | N4—C19—C20—C1    | -59.2 (3)    |
| C22—C5—C6—N2                  | -55.0 (3)    | C18—C19—C20—C31  | -0.7 (3)     |
| N2                            | -0.4 (2)     | N4-C19-C20-C31   | 179.66 (19)  |
| C5—C6—C7—C8                   | 179.4 (2)    | C18—C19—C20—C32  | -124.5 (3)   |
| C6—C7—C8—C9                   | 0.8 (3)      | N4—C19—C20—C32   | 55.9 (3)     |
| C7—C8—C9—N2                   | -0.8 (3)     | C2-C1-C20-C19    | 137.3 (2)    |
| C7—C8—C9—C10                  | 174.5 (2)    | N1-C1-C20-C19    | -47.1 (3)    |
| C6—N2—C9—C8                   | 0.6 (2)      | C2-C1-C20-C31    | -101.4 (3)   |
| C6—N2—C9—C10                  | -175.44 (19) | N1-C1-C20-C31    | 74.3 (3)     |
| C8—C9—C10—C11                 | 125.4 (3)    | C2-C1-C20-C32    | 18.9 (3)     |
| N2-C9-C10-C11                 | -59.8 (3)    | N1-C1-C20-C32    | -165.5 (2)   |
| C8—C9—C10—C23                 | -112.7 (3)   | C11—C10—C24—O25  | 138.4 (3)    |
| N2-C9-C10-C23                 | 62.2 (3)     | C9—C10—C24—O25   | -100.4 (3)   |
| C8—C9—C10—C24                 | 3.3 (3)      | C23—C10—C24—O25  | 17.2 (3)     |
| N2-C9-C10-C24                 | 178.14 (19)  | C11—C10—C24—O26  | -44.0 (3)    |
| C14—N3—C11—C12                | 0.4 (2)      | C9—C10—C24—O26   | 77.3 (2)     |
| C14—N3—C11—C10                | 177.46 (19)  | C23—C10—C24—O26  | -165.12 (19) |
| C9—C10—C11—C12                | 126.1 (3)    | O25—C24—O26—C27  | -3.1 (4)     |
| C23—C10—C11—C12               | 4.2 (3)      | C10-C24-O26-C27  | 179.1 (2)    |
| C24—C10—C11—C12               | -115.5 (3)   | C24—O26—C27—C28  | 88.2 (4)     |
| C9—C10—C11—N3                 | -50.1 (3)    | C24—O26—C27—C28A | 165.5 (6)    |
| C23—C10—C11—N3                | -172.0 (2)   | C19—C20—C32—O33  | -37.8 (3)    |
| C24—C10—C11—N3                | 68.3 (3)     | C1—C20—C32—O33   | 82.2 (3)     |
| N3-C11-C12-C13                | -0.3 (3)     | C31—C20—C32—O33  | -159.8 (2)   |
| C10-C11-C12-C13               | -177.0 (2)   | C19—C20—C32—O34  | 145.66 (19)  |
| C11—C12—C13—C14               | 0.2 (3)      | C1—C20—C32—O34   | -94.3 (2)    |
| C12-C13-C14-N3                | 0.1 (2)      | C31—C20—C32—O34  | 23.6 (3)     |
| C12-C13-C14-C15               | -176.7 (2)   | O33—C32—O34—C35  | -5.7 (3)     |
| C11—N3—C14—C13                | -0.3 (2)     | C20-C32-O34-C35  | 170.92 (19)  |
| C11—N3—C14—C15                | 177.00 (18)  | C32—O34—C35—C36A | -107.8 (8)   |
| C13—C14—C15—C16               | -137.3 (3)   | C32—O34—C35—C36  | -177.0 (2)   |
|                               |              |                  |              |
| Hydrogen-bond geometry (Å, °) |              |                  |              |

| D—H··· $A$                                          | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-----------------------------------------------------|-------------|--------------|--------------|---------|
| N2—H2N···O25 <sup>i</sup>                           | 0.86 (2)    | 2.37 (2)     | 3.211 (3)    | 167 (2) |
| Symmetry codes: (i) $-x+3/2$ , $y+1/2$ , $-z+1/2$ . |             |              |              |         |











